

What’s up ChucK? Development Update 2024

Marise van Zyl

CCRMA, Stanford University
Stanford, CA, United States

marise@ccrma.stanford.edu

Ge Wang

CCRMA, Stanford University
Stanford, CA, United States
ge@ccrma.stanford.edu

ABSTRACT

Since its inception in early 2000s, the ChucK music programming

language has undergone many expansions and changes. In the early

years, there was a flurry of contributions that are still in use today.

During the 2010s, there was a notable decrease in ChucK development

(despite a few dedicated individuals who kept the language on life

support). Recently, however, ChucK development has experienced

something of a resurrection. This paper highlights the major initiatives

since 2018, including new core language features, ChuGL (graphics),

ChAI (AI), Chunity (ChucK in Unity), Chunreal (ChucK in Unreal

Engine), WebChucK (ChucK in browsers), and further extensions to

the language through Chugins (ChucK plugins). Furthermore, we will

highlight future directions of ChucK development.

Author Keywords

ChucK, programming language, computer music software

development.

CCS Concepts

• Applied computing → Sound and music computing;• Software

and its engineering → Domain specific language; • Human-

centered computing→ Systems and tools for interaction design;

1. EXPANSION AND STASIS
ChucK is a strongly-timed music programming language [1]

originated by Ge Wang and Perry Cook at Princeton University. First

released in 2004 under the GPL open-source software license, the

defining features of the language include a deterministic, time-based,

concurrent programming model and an on-the-fly programming

workflow. ChucK development saw great expansion, as researchers

contributed many features to the language and ecosystem [2, 3, 4, 5,

6], which have been used in laptop orchestras [7,8,9], classrooms [10],

and in popular mobile music apps [11].

In the subsequent decade (circa 2008-2018), ChucK development

experienced a drastic slow-down due to various factors including

Wang joining the faculty at Stanford University and the founding of

Smule, a mobile music startup composed of several of ChucK’s core

developers. While early Smule apps and similar research initiatives

used ChucK [11, 12, 13, 14], the projects focused on application rather

than language development. Nevertheless, a few dedicated individuals

kept the language alive, although on “life support” [15, 16].

2. RESURRECTION
Since 2018, ChucK has experienced a development renaissance that

has resulted in a proliferation of additions and enhancements to the

language, workflow, and community. It is difficult to pinpoint exactly

when this renewal began.

But one might look to the creation of Chunity (ChucK in Unity) and

WebChucK by Jack Atherton in 2017 and 2018. Another catalyst

might be the publication of Artful Design [17] which highlighted

ChucK as a tool for the kind of aesthetics-driven design the book

argues for. On a practical note, the completion of the book also allowed

Wang to return to language development on ChucK. A third

development that solidified momentum for the ChucK development

renewal was Terry Feng’s creation of WebChucK IDE in Chris

Chafe’s Fundamentals of Computer-generated Music course at

CCRMA. WebChucK IDE expanded access and allowed ChucK to

be both run and coded wherever there is internet access. Meanwhile,

Celeste Betancur joined the CCRMA Ph.D. program and elevated, by

example, what ChucK was capable of as a modern musical

programming language for both academic works and as a battle-tested

live-coding tool in popular club settings. Finally, curricular demands

led to the creation of ChAI for Wang’s new “Music and AI '' critical-

making course, and, later, to ChuGL for the “Music, Computing,

Design” course at CCRMA. These developments made ChucK feel

relevant again and organically reignited enthusiasm in ChucK

development.

2.1 ChucK Kitchen Cabinet (CKC)
The “ChucK Kitchen Cabinet” is a group of ChucK developers at

CCRMA (and remotely) that form the core of ChucK development.

The group consists of a dozen members who meet regularly, plan the

development roadmap, work on various aspects of language

development, and organize sprints and development “hackathons” It

is unclear exactly how the group came to be, but by the fall of 2022, a

few stragglers organically found themselves in the same small room in

CCRMA, working on ChucK. Over time, more joined and the sense

of community and commitment towards a common goal solidified the

working group. “OG” ChucK developers such as Perry Cook and

Spencer Salazar contribute to the CKC as remote members.

A version of the colloquial “kitchen cabinet”, the CKC is a group of

individuals each with their skills and interests to bring to bear on

various aspects of the language. In this setting, there is both structure

and freedom for all the members, providing a balance of function and

fun. This is perhaps the closest ChucK development has come to a

formal and centralized development process and is certainly the largest

by group size.

Figure 1. GitHub commits to the ChucK core repository

from 2010 until February 2024.

.

NIME’24, September 4–6, 2024, Utrecht, The Netherlands

Licensed under a Creative Commons Attribution

4.0 International License (CC BY 4.0). Copyright

remains with the author(s).

3. NEW DEVELOPMENTS

3.1 Chunity: ChucK in Unity
Chunity (ChucK for Unity) is a programming environment for the

design of interactive audiovisual games, instruments, and experiences

created by Jack Atherton [18]. It embodies an audio-driven, sound-first

approach that integrates audio programming and graphics

programming in the same workflow, taking advantage of strongly-

timed audio programming features of the ChucK programming

language and the real-time graphics engine found in Unity. In short,

Chunity enables one to program ChucK inside the Unity game

development framework and provides mechanisms for

communication between ChucK and C# / Unity. At CCRMA, Chunity

has been used as a teaching tool as well as a research tool in CCRMA’s

VR Design Lab; it has been used in projects such as VVRMA [19],

RayTone [20], and sVoRk. (https://chuck.stanford.edu/chunity)

3.2 WebChucK + IDE
WebChucK allows ChucK to be used in a browser [21, 22]; its

development and use has drastically grown since Jack Atherton’s

initial work on WebChucK in 2018. WebChucK works by compiling

ChucK’s source code (in C++) to WebAssembly using Emscripten

and runs via the AudioWorkletNode interface of the Web Audio API.

WebChucK works on modern browsers, including on mobile phones

and tablets. Its modular nature makes it possible to embed real-time

interactive audio synthesis into any website, which have been used for

installation, shareable musical instruments, research, and teaching. A

recent development for WebChucK is the WebChucK IDE, developed

by Terry Feng in 2022 [23]. The IDE is an online programming

sandbox for ChucK which allows for programming straight in the

browser without downloading any software.

(https://chuck.stanford.edu/webchuck | https://chuck.stanford.edu/ide)

3.3 ChAI: Interactive AI Tools in ChucK
Despite its best efforts, ChucK could not escape AI and thus ChAI

(ChucK + AI) development commenced in 2022, led by Ge Wang and

Yikai Li. ChAI contains a set of tools, algorithms, datasets, examples

for working with supervised learning, unsupervised learning, neural

networks, interactive music generation, and education [24]. ChAI was

used as a primary tool in a Music and AI class taught at CCRMA by

Ge Wang for the first time in the winter of 2023 and again in 2024.

Objects include MLP (multilayer perceptron), KNN, SVM, HMM,

PCA, Word2Vec, and a full port of Wekinator [25]. Additional audio

features have been added to the unit analyzer framework, including

MFCC, Chroma, Kurtosis, SFM. Despite “caving” to the AI trend,

ChAI was not designed as a generative tool but instead prioritizes

“human-in-the-loop” interactive AI and an ethos of critical-making

(critical thinking + creative making). Similarly, Wang’s Music and AI

course stresses the need to be thoughtful about the implications of what

we make when designing anything with AI, and to be cognizant of its

power to shape not only behavior and workflows, but the very culture

in which we live, work, and play [26].

3.4 ChuGL: Unified Graphics and Sound

Programming in ChucK
Over the years, several attempts have been made to bring high-

performance 3D/2D graphics programming to ChucK, notably by

Philip Davidson in 2003 and by Spencer Salazar in 2013. Following

this ten-year trend, Andrew Zhu Aday and Ge Wang designed ChuGL

as a unified audiovisual programming framework built directly into

the ChucK language. This latest effort introduces an entirely new,

retained-mode, graphics engine architecture that works performantly

with real-time audio synthesis, while introducing a new language

construct called Graphics Generators (GGens), analogous to Unit

Generators (UGens). Building on past iterations, this latest ChuGL

successfully combines ChucK's real-time audio synthesis capabilities

with a hardware-accelerated 3D graphics engine into a single strongly-

timed language [27]. Presently, ChuGL now ships as part of the

standard language distribution and is used as the primary tool in

“Music, Computing, Design” course at Stanford University.

(https://chuck.stanford.edu/chugl)

3.5 Core Language Features
In addition to the above expansions to the ChucK ecosystem, much

work has gone into expanding the core language with new features and

quality-of-life improvements. These include object constructors

(finally!), operator overloading, improved memory management,

additional control structures including for-each, advanced Chugins

programming API, CKDoc (a dynamic in-engine documentation

generator), and numerous optimizations and bug fixes (and likely new

bugs). Furthermore, audio driver selection has been added on all

platforms (macOS, Linux, Windows), including ASIO and WASAPI

on windows. Support for Apple Silicon has been added as well, with

profound (3x or more) performance improvements across the board.

3.6 Documentation
Many of the important changes and updates to the language are less

obvious, yet perhaps more salient. In the early part of 2023, ChucK

underwent a massive documentation overhaul with a long-overdue

API documentation of standard ChucK objects, each with example

code. (https://chuck.stanford.edu/doc/reference)

Figure 2. Members of the ChucK Kitchen Cabinet

(CKC) at a development “hackathon”.

.

Figure 3. An audiovisual cityscape made with Chunity.

Figure 4. Unified, audiovisual programming in ChucK

with ChuGL.

https://chuck.stanford.edu/chunity
https://chuck.stanford.edu/webchuck
https://chuck.stanford.edu/ide
https://chuck.stanford.edu/chugl
https://chuck.stanford.edu/doc/reference

This documentation replaces the previous static (and incomplete and

out-of-date) documentation and is now generated dynamically (using

CKDoc) from within the ChucK runtime type system to ensure

accuracy with respect to the latest actual language API. The ChucK

webpage has been updated with new content (e.g., examples, video

tutorials by ChucK community member Clint Hoagland, links to

resources, WebChucK IDE), as well as a new cosmetic update.

3.7 Chugins
A Chugin, in short, is a plugin for ChucK. Each Chugin operates as a

distributable dynamic library, typically written in C or C++ compiled

to native machine code, which ChucK can load and use at runtime as

expansion to the language with new audio synthesis and analysis

functionalities, as well as general purpose programming libraries.

While chugins support has existed since 2012 [15], the past few years

has seen many new Chugins (ConvRev, FluidSynth, NHHall,

LADSPA, Hydra, RAVE: IRCAM’s variational autoencoder for real-

time audio synthesis). Moreover, the Chugins API has been expanded

to give Chugin creators greater power and access into the ChucK

virtual machine (VM) runtime. In fact, ChuGL runs as a special

Chugin that can natively synchronize graphics with the ChucK type

system and VM and access a well-defined set of API functions.

3.8 Additional ChucK Integrations
ChucK has been increasingly integrated with and into other software

systems. In addition to Chunity, Eito Murakami developed Chunreal,

an integration of ChucK into Unreal Engine 5 that allows users to

compile and run ChucK code at runtime in communication with UE5

objects. Development is ongoing. Another integration is FaucK, which

combines the powerful, succinct Functional AUdio STream (FAUST)

language with the strongly-timed ChucK audio programming

language [28] FaucK allows programmers to on-the-fly evaluate Faust

code directly from ChucK code and control Faust signal processors

using ChucK's sample-precise timing and concurrency mechanisms.

Further developments include ChucK Designer (ChucK in

TouchDesigner; David Braun), pd-chuck (ChucK in PureData), and

ChucK-Max (ChucK in Max MSP) both by shakfu.

4. CONCLUSION AND FUTURE WORK
Since ChucK’s initial release in 2004, the ChucK community has been

an integral part of its being. The community not only brings together

programmers using ChucK for a variety of purposes, but the

community also contributes to and ultimately pushes development

forward in the form of feedback, shared work, code, feature requests,

bug reports, pull requests, Chugins, and entirely new ways of using

ChucK. Today, ChucK Community exists as a public Chuck

Community Discord Server (https://discord.gg/Np5Z7ReesD),

mailing lists, and a Facebook group.

2024 marked the 20th anniversary of ChucK and development is

actively progressing on all aforementioned projects, as well as new

initiatives including a ChucK Package Manager and a Stanford VR

Orchestra powered by Chunity. Many factors have contributed to the

resurrection of ChucK. For reasons unknown, individuals are choosing

to use their time to work on a computer music programming language.

While this endeavor might not save the world, it does hold some

intrinsic value to the people doing it; and isn’t that reason enough?

5. ACKNOWLEDGMENTS
Firstly, thank everyone in the ChucK Kitchen Cabinet and

ChucK Community, including Nick Shaheed, Terry Feng,

Celeste Betancur, Alex Han, Yikai Li, Andrew Zhu Aday, Eito

Murakami, Spencer Salazar, Perry Cook, Kunwoo Kim, Clint

Hoagland, David Braun, Max Jardetzky, Mike Mulshine, Rob

Hamilton, Jack Atherton, Rebecca Fiebrink, shakfu, Dana Batali,

Michael Heuer, Ajay Kapur, Chris Chafe, students of courses at

Stanford University, Princeton University, and CalArts.

6. ETHICAL STANDARDS
This paper complies with the NIME ethical standards. No human or

animal participants are involved.

For more information visit the ChucK website:

https://chuck.stanford.edu/

7. REFERENCES
[1] Wang, G., P. R., Cook, and S. Salazar. 2015. “ChucK: A

Strongly Timed Computer Music Language” Computer

Music Journal 39:4. doi:10.1162/COMJ_a_00324.
[2] Wang, G., P. R. Cook. 2004. “On-the-fly Programming:

Using Code as an Expressive Musical Instrument.”. In
Proceedings of the International Conference on New

Interfaces for Musical Expression. Hamamatsu, Japan.
[3] Wang, G., A. Misra, A. Kapur, and P. R. Cook. 2005.

“Yeah ChucK It! => Dynamic Controllable Interface

Mapping.”. In Proceedings of the International

Conference on New Interfaces for Musical Expression.

Vancouver.
[4] Salazar, S., G. Wang, and P. R. Cook. 2006. “miniAudicle

and ChucK Shell: New Interfaces for ChucK Development
and Performance.” In Proceedings of the International

Computer Music Conference. New Orleans.
[5] Wang, G., R., Fiebrink, and P. R. Cook. 2007.

“Combining Analysis and Synthesis in the ChucK

Programming Language.” In Proceedings of the

International Computer Music Conference. Copenhagen.
[6] Fiebrink, R., G. Wang, and P. R. Cook. 2008.

“Foundations for On-the-fly Learning in the ChucK

Programming Language.” In Proceedings of the

International Computer Music Conference.” Belfast,

Ireland.
[7] Trueman, D., P. R. Cook, S. Smallwood, and G. Wang.

2006. “PLOrk: Princeton Laptop Orchestra, Year 1.” In

Proceedings of the International Computer Music

Conference. New Orleans.

[8] Smallwood, S., D. Trueman, P. R. Cook, and G. Wang.

2008. “Composing for Laptop Orchestra.” Computer

Music Journal. 32(1):9-25.
[9] Wang, G., N. Bryan, J. Oh, and R. Hamilton. 2009.

“Stanford Laptop Orchestra (SLOrk).” In Proceedings of

the International Computer Music Conference. Montreal.
[10] Wang, G., D. Trueman, S. Smallwood, and P. R. Cook.

2008. “The Laptop Orchestra as Classroom.” Computer

Music Journal. 32(1):26-37.
[11] Wang, G. 2014. “Ocarina: Designing the iPhone's Magic

Flute.” Computer Music Journal. 38(2):8-21.
[12] Fiebrink, R., G. Wang, and P. R. Cook. 2008. “Support for

MIR Prototyping and Real-time Applications of the

ChucK Programming Language.” In Proceedings of the

International Conference on Music Information Retrieval.
Philadelphia.

[13] Fiebrink, R. A. 2011. Real-time human interaction with

supervised learning algorithms for music composition and

performance. PhD Thesis. Princeton University.

[14] Wang, G., S. Salazar, J. Oh, and R. Hamilton. 2015.

“World Stage: Crowdsourcing Paradigm for Expressive

Social Mobile Music.” Journal of New Music Research.

44(2):112-128.
[15] Salazar, S. and G. Wang. 2012. “Chugens, Chubgraphcs,

and Chugins: 3 Tiers for Extending ChucK.” In

Proceedings of the International Computer Music

Conference. Slovenia.

https://discord.gg/Np5Z7ReesD
https://chuck.stanford.edu/

[16] Kapur, A., P. R. Cook, S. Salazar, and G. Wang. 2015.

Programming for Musicians and Digital Artists: Creating

Music with ChucK. Manning Press. (ISBN: 978-

1617291708).
[17] Wang, G. 2018. Artful Design: Technology in Search of

the Sublime (a MusiComic Manifesto). Stanford University

Press. (ISBN: 978-1503600522.
[18] Atherton, J. and G. Wang. 2018. “Chunity: Integrated

Audiovisual Programming in Unity.” In proceedings of

New Interfaces for Musical Expression.
[19] Kim. K. and G. Wang. 2024. “VVRMA: VR Field Trip to

a Computer Music Center.” New Interfaces for Musical

Expression. Utrecht.
[20] Murakami, E., Burnett, J., G. Wang. 2024. “RayTone: A

Node-based Audiovisual Sequencing Environment.” New

Interfaces for Musical Expression. Utrecht.
[21] Chafe, C., Ge Wang, M. R. Mulshine, J. Atherton. 2023.

“What Would a Webchuck Chuck?” The Journal of the

Acoustical Society of America. 153(3) Supplement A35.

https://doi.org/10.1121/10.0018058.
[22] Mulshine, M. R., G. Wang, J. Atherton, C. Chafe, T. Feng,

C. Betancur. 2023. “WebChucK: Computer Music

Programming on the Web.” In proceedings of New

Interfaces for Musical Expression. Mexico City.
[23] Feng, T., C. Betancur, M. R. Mulshine, C. Chafe, G.

Wang. 2023. “WebChucK IDE: A Web-Based

Programming Sandbox for ChucK.” In proceedins of

Sound and Music Computing. Stockholm.
[24] Li, Y, Wang, G. 2024. “ChAI: Interactive AI Tools in

ChucK.” New Interfaces for Musical Expression. Utrecht.

[25] Fiebrink, R., & Cook, P. R. 2010. “The Wekinator: a

system for real-time, interactive machine learning in

music.” In Proceedings of The Eleventh International

Society for Music Information Retrieval Conference. (Vol.

3, pp. 2-1).
[26] Wang, G. 2019 “Humans in the Loop: The Design of

Interactive AI Systems.” Stanford Human-Centered

Artificial Intelligence.

[27] Aday, A.Z., Wang, G. 2024. “ChuGL: Unified

Audiovisual Programming in ChucK.” New Interfaces for

Musical Expression.Utrecht.

[28] Wang, G. and R. Michon. 2016. “FaucK!! Hybridizing the

FAUST and ChucK Audio Programming Languages.”

Sound and Music Computing.

https://doi.org/10.1121/10.0018058

	1. EXPANSION AND STASIS
	2. RESURRECTION
	2.1 ChucK Kitchen Cabinet (CKC)

	3. NEW DEVELOPMENTS
	3.1 Chunity: ChucK in Unity
	3.2 WebChucK + IDE
	3.3 ChAI: Interactive AI Tools in ChucK
	3.4 ChuGL: Unified Graphics and Sound Programming in ChucK
	3.5 Core Language Features
	3.6 Documentation
	3.7 Chugins
	3.8 Additional ChucK Integrations

	4. CONCLUSION AND FUTURE WORK
	5. ACKNOWLEDGMENTS
	6. ETHICAL STANDARDS
	7. REFERENCES

