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ABSTRACT

ChuGL (sounds like ”chuckle”; rhymes with ”juggle”) is a
unified audiovisual programming framework built into the
ChucK language. It extends ChucK’s strongly-timed, con-
current programming model with a 3D rendering engine
and a new paradigm for coding real-time graphics and au-
dio. ChuGL introduces the notion of a Graphics Genera-
tor (GGen) that can be manipulated sample-synchronously
alongside audio unit generators (UGens) to unify graphics
and audio within a single strongly-timed language. Un-
der the hood, this is made possible by a multithreaded
scenegraph architecture that provides low-latency, high per-
formance audiovisual synchronization. In this paper we
present the design ethos of ChuGL, describe its integrated
graphics-and-audio workflow, highlight architectural deci-
sions, and present an evaluation of ChuGL as a tool for
expressive audiovisual design, used in a computer music
programming course at Stanford University. ChuGL trans-
forms ChucK into a standalone audiovisual programming
language, and argues for a way of thinking and doing in
which audio and graphics are given equal importance.
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•Human-centered computing → Systems and tools for inter-
action design;
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1. INTRODUCTION
ChuGL is a high-performance 3D graphics tool and work-
flow built into the ChucK programming language [26]. It
is designed around ChucK’s existing strongly-timed, con-
current programming model such that users can create in-
teractive audiovisual applications with sample-synchronous
timing of both graphics and audio.

As computer musicians who also care about graphics and
gaming, we designed ChuGL holistically as an audio-driven
graphics API. Being audio-driven [10] applies to ChuGL
both as a tool and a workflow. As a tool, ChuGL is im-
plemented within and driven by the ChucK virtual ma-
chine; this placement of a graphics engine within the con-
text of an audio engine is the inverse of typical game en-
gine architecture, and results in a programmer experience
uniquely different from other methods of audiovisual pro-
gramming. As a workflow, ChuGL seamlessly integrates
into a ChucK-ian style of using musical events and precise
sample-synchronous timing to drive audio, graphics, and the
structure of the audiovisual experience as a whole; graph-
ics in ChuGL are “strongly-timed” in the same way audio
is strongly-timed in ChucK. This workflow—the ability to
think about and program graphics parallel to how one al-
ready uses ChucK to program sound—leads us to propose
that ChucK+ChuGL is (one of) the first programming lan-
guages with native support for unified audiovisual program-
ming.

Put another way, ChuGL is designed for people who care
deeply about interactive sound programming and are famil-
iar with traditional audio workflows. This paper presents a
unified workflow where Graphics Generators (GGens) par-
allel Unit Generators (UGens), scenegraphs parallel signal
networks, graphical events are treated like any other timing
event, and wherever else possible the graphics API naturally
extends the pre-existing ways of using ChucK for sound-
synthesis. ChuGL is for audiovisual designers, computer
musicians, game programmers interested in audio, and stu-
dents of all the above.

As hands-on designers ourselves, we believe the merit of
a tool comes not from its complexity or feature set, but
from what one can actually make with it, and the qual-
ity of one’s moment-to-moment experience during that cre-
ative process. Therefore, we have chosen to evaluate ChuGL
as the primary programming environment used in Stanford



University’s Music, Computing, Design course of Fall 2023.
The remainder of this paper is organized as follows: we

compare related tools for audiovisual programming, explain
the motivation behind our design decisions, demonstrate
a workflow for strongly-timed graphics, highlight architec-
tural decisions, and evaluate ChuGL’s use in a classroom
setting. Lastly, we describe ongoing work and reflect on our
journey thus far.

2. RELATED WORK
There are many methods for programming interactive au-
diovisual applications. Some involve working directly with
graphics and audio APIs in a systems language such as Rust
or C++. This means building tools and abstractions from
first principles. While flexible and performant, this also
entails significant programming overhead, and requires the
programmer to be knowledgeable about low-level implemen-
tation details. Relevant libraries include OpenGL, Vulkan,
RtAudio, SynthesisToolKit, and OpenFrameworks [4, 13, 7,
23].
Another method is to use two separate applications—one

for audio, another for graphics—and synchronize data be-
tween them over a network protocol such as Open Sound
Control [28]. Using this method, one can coordinate au-
dio synthesis from tools such as ChucK or Pure Data [20]
with rendering abilities of applications such as Processing
[5]. This is a popular approach used by many, including
the Stanford Laptop Orchestra [25]. However, synchroniz-
ing data between separate processes introduces both a tech-
nical limitation in terms of the latency and bandwidth of
data transfer, as well as programming overhead in terms of
having to structure code around these data-sharing require-
ments.
A third method is to use a game engine equipped with

a sound effects (SFX) engine. Options include Unity, Un-
real Engine, and Godot, which have plugins or builtin inte-
grations with SFX engines such as FMOD [21] and Wwise
[8]. These game engines have renderers optimized for com-
plex 3D graphics and audio APIs which are designed around
the requirements typical of 3D games: optimized sound file
playback and spatialization. SFX engines offer additional
tools for offline sound authoring but are not meant for real-
time sound synthesis; they are generally incapable of precise
musical timing, generative composition, or other require-
ments typical of computer music.
Yet another approach is to use a graphical patching tool

such as Max/MSP/Jitter [3] or TouchDesigner [6]. These
visual interfaces are great for non-programmers and en-
able rapid experimentation of the mapping schemes between
both graphics and audio generators. However, they also
share the typical shortcomings of graphical patching lan-
guages, which include the dependence on existing high-level
objects (or externals programmed in low-level implementa-
tion languages) and the inability to programmatically ma-
nipulate patch structure. As a result, these tools typically
are not used to develop general audiovisual systems such as
video games, which is a design goal of ChuGL.
Live-coding tools offer their own style of audiovisual pro-

gramming. There are separate tools for graphics [2, 1] and
music [16, 17], which can communicate over network or vir-
tual audio channels. These systems are built for live per-
formance, prioritizing terseness and expressivity along very
specific directions. Consequently, they are designed for use
only by the performer, and are not intended for general au-
diovisual software development.
The final method we observe is embedding a programmable

audio engine inside a game engine. This is the architecture

of Chunity [9] and Chunreal1, which embed the ChucK VM
inside Unity and Unreal, respectively. This approach offers
better performance and tighter program integration than
using separate applications connected over network (here
the network layer is removed), but shares the drawback of
needing to code in multiple languages and coordinate data
and timing across two separate processes. Significant pro-
grammer effort is often required to properly synchronize
data across audio and graphics code, which becomes a de-
sign and performance bottleneck for large-scale systems.

3. DESIGN ETHOS
Audiovisual programming is inherently complex. Audio and
graphics have traditionally been separate subfields of com-
puting, each with their own established tools, techniques,
concepts, workflows, etc. Historically, the audiovisual de-
signer who aspires to integrate synthesized sound with real-
time rendered visuals must code each side independently, of-
tentimes in separate programming environments, and some-
how bridge the two.

In our experience, the disparity between audio and graph-
ics programming paradigms (spanning code to hardware)
limits the scope of the overall application and tends to pull
the designer away from writing code that actually matters,
i.e. code that contributes to an actual sound, visual, or
interaction in the final experience.

Our insights from working extensively with existing tools
led us to rethink audiovisual programming from first princi-
ples: we designed ChuGL not as a bridge between separate
audio and graphics pipelines, but as a programming frame-
work wherein audio and graphics are unified at the root,
both in terms of user workflow and underlying implementa-
tion. ChuGL is designed to be:

• Unified: interactive audiovisuals can be coded in a
single programming environment, without need to ex-
plicitly pass data across separate graphics and audio
contexts

• Strongly-timed: a graphical workflow integrates into
ChucK’s strongly-timed concurrent programming model;
the designer thinks about programming graphics in
the same way that they already think about program-
ming sound.

• Dual-performance: real-time sound synthesis and 3D
graphics running at high frame rates; neither audio
nor graphics is sacrificed for the other.2

ChuGL’s development was greatly accelerated by an un-
expected turn of events in the games industry. In September
2023, Unity Technologies—formerly the champion of indie
game development—announced a new “runtime fee” which
would charge developers a per-install fee for games made in
their Unity engine. The terms of the pricing model were
seen as extreme and even predatory for game developers
(certain price-per-install to install-count ratios would make
the game developer owe Unity more money than the game
had even made). As educators we realized ChuGL held new
cultural importance: to be a free, open-source platform ded-
icated to protecting the interests of students and creatives.
1https://github.com/ccrma/chunreal
2Historically, game developers rarely prioritize audio (which
typically is relegated to file playback with a minimal CPU
budget). Researchers such as Perry Cook have argued for
a cultural shift in games and other interactive applications
towards prioritizing audio via parametric sound synthesis
and simulation sharing between audio and graphics. For
example, in a boxing game, mesh deformation of someone’s
face getting punched can be used for graphics and to inform
audio synthesis [12].



We therefore chose to replace Chunity (ChucK + Unity,
in use since 2017) [9] with ChuGL (ahead of our original
timetable) in CCRMA’s Music, Computing, Design course.
It is in this context that we develop ChuGL, not only to
provide a new workflow, but from motivations that are ed-
ucational and cultural.

4. WORKFLOW
ChuGL integrates graphics programming into the strongly-
timed audio workflow of ChucK by designing abstractions
around the many parallels we observe between graphics ren-
dering and audio synthesis, while also taking advantage of
their differences. Informally, we want to make graphics pro-
gramming in ChuGL “fun”, and fun to program in tandem
alongside audio.

ChucK ChuGL Purpose
UGen GGen Synthesis Unit
UGen graph GGen graph Audio/graphics state
=> --> Graph connection

operator
dac GG.root() Global sink/source

nodes
tick() update() Synthesis function

for custom genera-
tors

Table 1: Parallels between ChucK and ChuGL workflows.

4.1 Graphics Generators (GGens)
ChuGL’s first core abstraction is the Graphics Generator,
or GGen for short. Analogous to how Unit Generators form
the building blocks for audio signal networks, graphics gen-
erators are the base class for all graphical entities which ex-
ist in virtual 3D space. A GGen by itself contains transform
data (position, rotation, scale) and has no corresponding
visual display. Expressivity comes from 1) ChuGL’s class
library of primitives which includes 3D geometries, lighting,
cameras, text, etc. and 2) extending these GGens with cus-
tom geometry, materials, behavior, and even subgraphs of
other GGens.

4.2 The Scenegraph
GGens can be connected to form scenegraphs, another core
abstraction in ChuGL. Just as ChucK unit generators may
be connected together to form a signal processing network
that outputs sound, ChuGL graphics generators can be con-
nected together to form a scenegraph that is drawn to the
screen as a 3D scene. While UGen networks might con-
tain oscillators, filters, and envelope generators, a ChuGL
scenegraph contains descriptions of transforms, geometry,
materials, and other graphical state required for drawing.
And just as ChucK processes audio samples for UGens con-
nected to a global dac UGen, ChuGL similarly will render
GGens connected to a global scene root, GG.root().

// connecting a UGen to the audio network
SqrOsc square => dac;

// connecting a GGen to the scenegraph
GCube cube --> GG.root();

Listing 1: Similarities between ChucK audio patching and
the ChuGL scenegraph.

UGens are connected to each other via the => “chuck” op-
erator, denoting an audio sample input-output relationship;
likewise, GGens are connected to each other with the -->

”gruck” operator, denoting a parent-child transform hierar-
chy. Through these abstractions, programming graphical
systems can be clearly delineated in code similar to pro-
gramming audio synthesis networks. Listing 1 illustrates
these parallels.

ChuGL provides an API to freely modify the scenegraph
in user-written code, as well as a custom 3D renderer that
draws each frame based on current scenegraph state. Sup-
ported graphics features include:

• Transform hierachies
• Various geometry, materials, and lighting types
• Texture mapping and environment mapping
• Transparency
• 3D model loading of several popular file formats
• World-space text rendering
• Custom vertex/fragment/screen shaders
• Post processing effects, including HDR colors, tonemap-

ping, and bloom
• UI library

4.3 The Gameloop
The abstractions for making 3D scenes dynamic also par-
allel the audio workflow. While sound is shaped by explic-
itly passing time and changing the state of various UGens
over the course of many audio samples, graphics are ani-
mated by passing time explicitly in ChucK and changing
the state of the scenegraph over time. We call the infinite
loop of frame-by-frame updates the gameloop, and a per-
frame timing event is exposed in ChuGL via the global event
GG.nextFrame(). Furthermore, graphical behavior can be
separated across multiple concurrent ChucK shreds pre-
cisely like audio control in ChucK, each running according
to its own timing logic. This gives rise to the strongly-timed
audiovisual programming paradigm in ChuGL. Shreds A
and B in Listing 2 demonstrate these parallels.

// Shred A: Updating oscillator frequency
while (true) {

Math.random2 (220, 880) => square.freq;
100::ms => now;

}

// Shred B: Updating cube rotation
while (true) {

GG.dt() => cube.rotateY;
GG.nextFrame () => now;

}

// Shred C: Mapping cube scale to
oscillator frequency

while (true) {
square.freq() / 220.0 => cube.scale;
100::ms => now;

}

Listing 2: Similarities between audio and graphics updates
(Shreds A and B); mapping a graphics parameter to an
audio parameter (Shred C).

4.4 Syncing Graphics and Audio
Because ChuGL is designed to be a unified audiovisual pro-
gramming environment, sharing data between graphics and
audio states is trivial—all state lives in the same program
so it’s already shared by default! Shred C in Listing 2
shows how making the size of a cube change according to



1 // window and scene setup
2 GG.windowTitle( "sndpeek (ChuGL version)" );
3 GG.fullscreen ();
4 GG.scene().backgroundColor( @(0,0,0) );
5

6 // scenegraph setup (graphics)
7 GLines waveform --> GG.scene();
8 GLines spectrum --> GG.scene();
9

10 // audio analysis network setup (audio)
11 adc => Accum accumulator => blackhole; // audio waveform accumulator
12 adc => PoleZero dcbloke => FFT fft => blackhole; // spectrum analyzer
13

14 // omitted: initialization code for GGens , UGens , UAnas
15 // ...
16

17 // audio processing
18 fun void doAudio () {
19 while( true ) {
20 // waveform: get the most recent audio samples
21 accum.upchuck (); accum.output(samplesArray);
22 // spectrum: take FFT of waveform data , get magnitude response
23 fft.upchuck (); fft.spectrum(responseArray);
24 // jump by FFT hop size
25 HOP_SIZE ::samp => now;
26 }
27 }
28 // run doAudio () as concurrent shred
29 spork ~ doAudio ();
30

31 // graphics loop
32 while( true ) {
33 // map waveform samples to vertex positions
34 waveform.geo().positions(map2waveform(samplesArray));
35 // map spectrum magnitude response to vertex positions
36 spectrum.geo().positions(map2spectrum(responseArray));
37 // onto the next graphics frame
38 GG.nextFrame () => now;
39 }

Listing 3: Abbreviated implementation of sndpeek in ChuGL. Lines 2-4: Setting application window appearance and
background color. Lines 7-8: Connecting two line renderers to the scenegraph. Lines 11-12: Building an audio analysis
network to capture waveform and spectrum data from mic input. Lines 18-29: Looping an audio shred to regularly fetch
new audio analysis data. Lines 32-29: Looping the main shred every frame to map the latest audio analysis data to vertex
positions in the line renderers.

the pitch of an oscillator is as simple as reading and writ-
ing a variable—all the mundane bookkeeping necessary to
integrate audio and graphics is implicitly handled by the
ChuGL backend so that the programmer can focus on writ-
ing creative, meaningful code.
Listing 2 also demonstrates two distinct methods of up-

dating graphical state. Shred B updates graphical state ev-
ery frame via passing GG.nextFrame() => now. This gener-
ates smooth frame-rate animations and can be thought of as
continuous updates. Alternatively, ChucK’s strongly-timed
scheduler allows making changes under arbitrary timing,
shown by Shred C only updating state every 100ms. We call
these discrete updates, which are especially useful for react-
ing to one-shot events like musical downbeats. Changes to
the scenegraph via discrete updates appear in next rendered
frame.

4.5 Custom GGens
GGens can be subclassed in ChucK code to group graphical
primitives, data, and behavior under a single abstraction
that works like any other GGen. In addition, all custom
GGens can implement a user-provided update() function,
automatically called every graphics frame by the ChuGL
backend. This programming model parallels writing custom
unit generators by extending UGens and overriding the base
tick() function.

In summary, ChuGL’s programming abstractions build
upon the many parallels we have observed between graph-
ics rendering and audio synthesis. Where Chuck traverses
the UGen graph every sample to compute values for an au-
diobuffer, ChuGL traverses the scenegraph every graphics
frame to compute color values for the display buffer. Find-
ing these parallels allowed us to design ChuGL in a way
that naturally integrates with the existing ChucK workflow.
These are summarized in the Table 1.

4.6 Putting it All Together
As a more comprehensive example, we demonstrate recreat-
ing the sndpeek audio visualizer [18]. Originally written in
C++, sndpeek visualizes the current audio waveform along-
side a waterfall plot of spectrum history. Listing 3 contains
the abbreviated implementation in ChuGL, showing basic
window setup, scenegraph and audio graph initialization,
and audio visualization with concurrent shreds. Note that
audio analysis is performed with Unit Analyzers [27], which
in the scope of this example can be thought of analogously
to UGens. As a quick comparison, the complete ChuGL
code3 for this example is 232 lines counting comments and

3https://chuck.stanford.edu/chugl/examples/
sndpeek/sndpeek.ck



whitespace, while the main C++ sndpeek program4 is over
1500 lines not counting code for thread management, au-
dio analysis, and other necessary bookkeeping. Moreover,
ChuGL benefits from using a more modern graphics API
and runs at C++ sndpeek’s framerate or faster.
This example provides a blueprint of ChuGL’s unified

workflow for programming graphics and audio, including
how each can be mapped to the other. It can be extended
to an arbitrary extent and complexity.

5. ARCHITECTURE
ChuGL is implemented as a ChuGin (ChucK plugin) [22].
The ChuGin interface functions as a dynamic binding be-
tween ChucK and native compiled code by providing an
API to important VM functionality including shred man-
agement and garbage collection. At runtime, the VM dy-
namically loads ChuGL to make its functionality available
to all ChucK programs.
ChuGL’s unified programming model (as illustrated in

Section 4), is made possible by three key aspects of its
system-design: 1) the API is retained-mode, 2) audio and
graphics run in parallel and 3) a non-blocking synchroniza-
tion architecture maintains scenegraph state across threads.

5.1 Retained-mode API
ChuGL is a retained-mode graphics API [15], meaning that
the library implementation—and not the ChucK program-
mer—is responsible for handling graphics-related state. The
programmer instead controls graphics by indirectly modify-
ing this state via API functions to freely read and modify
the ChuGL scenegraph. Note that retained-mode APIs are
in contrast to immediate-mode APIs where the program-
mer has to manage their own state and explicitly issue com-
mands to “redraw”a graphical entity every frame. The ben-
efits of this retained-mode approach are threefold:

1. The programmer does not need to concern themselves
with the implementation details of 3D rendering. Like
ChucK does for audio, ChuGL hides the mundane
while exposing the expressive.

2. ChuGL’s hardware-accelerated backend is far more
performant than an immediate-mode approach using
ChucK for software rendering.

3. Retaining state internally enables the implementation
of ChuGL’s other key architectures, namely gameloop
parallelization and scenegraph synchronization.

5.2 Parallelizing the Gameloop
ChuGL renders graphics on a separate thread that runs in
parallel with the ChucK VM thread, which synthesizes au-
dio. We call these the graphics thread and audio thread
respectively, and describe ChuGL’s gameloop as implicitly
parallel. In practice, we found the implementation of a par-
allel gameloop—where audio and graphics do not block on
each other—to be a necessary optimization for running real-
time audiovisual applications.
To coordinate scheduling these separate threads, ChuGL

takes advantage of the fact that real-time audio has more
stringent timing requirements than graphics. Dispatching
audio at frame rate from a graphics-driven gameloop lacks
the resolution for precise audio-rate timing. Conversely,
Chuck’s sample-synchronous scheduler has no difficulty with

4https://soundlab.cs.princeton.edu/software/
sndpeek/

audio 
thread

 graphics 
thread

update frame
N+1

render frame
N

wait for 
nextFrameEvent

synchronize 
scenegraph

GG.nextFrame()
=> now;

notify

broadcast

Figure 1: ChuGL’s thread coordination process. The audio
thread computes scenegraph state for the next frame while
the graphics thread renders the current frame.

frame-rate timing resolution. Therefore, ChuGL dispatches
the graphics thread from the audio thread and provides
ChucK with a non-blocking frame event that shreds can
wait on to execute once every frame. This two-way co-
ordination process is diagrammed in Figure 1. Note that
shreds waiting on the frame event are only allowed to run
once the graphics thread has finished drawing the previ-
ous frame; this enforces that both threads remain at most
1 frame apart, preventing desync bugs and capping the la-
tency for audiovisual correspondence to 1 frame (in practice
only a few milliseconds).

Under this architecture, performing significant amounts
of computation on the audio thread or increasing the audio
buffer size can reduce graphical framerate, but long draw
times in the renderer will never slow down audio synthesis.
This behavior follows our guiding principle of designing an
audio-driven engine.

5.3 Scenegraph Synchronization
A parallel gameloop necessitates both threads can access
scenegraph state safely and performantly. To avoid all the
performance and correctness issues associated with data
sharing (race conditions, memory safety, etc.) ChuGL in-
stead duplicates the scenegraph across both threads. The
audio thread controls the source-of-truth scenegraph, which
the programmer can freely read and modify. Meanwhile, the
graphics thread owns a scenegraph copy that is incremen-
tally updated every frame to stay in sync. No locks are
required for reading or writing to one’s local copy, ensuring
stable performance. Figure 2 diagrams this synchronization
architecture.

audio 
thread

 graphics 
thread

scenegraph

synchronize
every graphics frame

scenegraph copy

read onlyread/write

Figure 2: Scenegraph synchronization architecture.
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Figure 3: Screenshots from the student showcase. A: Splitflap. B: Rhythm Market. C: Sushi Game. D: OceanSide. E: ChucK
Invaders. F: GrainBox. G: l-systems & whimsy. H: Sounds Like Rain. See video at https://vimeo.com/909845445.

6. CASE STUDY
ChuGL was the primary teaching tool for the Fall 2023 edi-
tion of Stanford’s Music, Computing, and Design course.
In this course on interactive audiovisual design, 25 students
used ChuGL to create audio visualizers, sequencers, musi-
cal games, and more. Their projects and feedback gave us
real-world insight into what students can create with the
tool and, more importantly, how using it made them feel.
ChuGL’s feature set will grow with time; the programming
paradigm and way of thinking, however, are core to its iden-
tity.
In this qualitative evaluation we showcase select student

work and discuss student feedback on an anonymous, op-
tional course exit survey. Our survey is modeled on the
questionnaire previously used to evaluate Chunity in 2018,
allowing us to directly measure the strengths and weak-
nesses of ChuGL in comparison to another audiovisual tool.

6.1 Student Showcase
Our showcase contains descriptions of select student projects,
images of those projects in action, and a video demo reel.
The images and video are provided in Figure 3.

• Splitflap: An audio interaction/instrument that ex-
plores stochasticism, time and change.

• Rhythm Market: A competitive two-player, grocery
shopping rhythm game.

• Sushi Game: A game, instrument, and sequencer about
operating a conveyor belt sushi restaurant.

• OceanSide: Explore a world where sound is trans-
formed into mountains, ocean waves, and lighting.

• Chuck Invaders: Musical space invaders! All weapon
pickups correspond to musical instruments, and a gen-
erative soundtrack evolves as the player progresses
through levels.

• GrainBox: A granular sequencer and sand simulation
where the grains of sand are also grains of sound.

• l-systems & whimsy: An instrument for constructing
musical sequences with Lindenmayer Systems.

• Sounds Like Rain: A horror game built around an “Ir-
rational Rhythm” sequencer which depicts the sound
of rain.

Mean ± S.D. Min, Max
Years Music Training 12.41± 5.88 [0, 20]
Years Coding 5.5± 2.64 [2, 11]
Years ChucK .40± 0.87 [0, 3]
Years Graphics 0.16± 0.32 [0, 1]

Table 2: Student Demographics. Most had prior musi-
cal and general programming experience but were new to
graphics and audio programming.

6.2 Reported Experience
The exit survey included several questions asking students
to freely reflect on aspects of the class, including:

Did ChuGL encourage a way of thinking about audiovisual
programming that made sense?

• “It felt like I could think about audio and visuals
equally when sculpting a narrative.”

• “Being able to think critically about the audio and
visual timing of whatever art I was creating helped
with integrating the two, especially since they were in
the same language.

• “Using ChuGL actually felt incredibly intuitive once I
was familiar with how it worked. It really encouraged
me to simultaneously think about the audio and visual
components of a given project, instead of only one or
the other.“

How does using ChuGL compare to other tools you’ve used
for audiovisual programming?

• “ChuGL felt way more intuitive and easier to use, since
there wasn’t any extra back-and-forth between ChucK
and Unity that I had to account for; I could just dive
right into audiovisual programming straight away with
ChuGL.”

• “Rigorous, learner-focused documentation was the lar-
gest shortcoming by far when it came to moving ideas
from my head into reality. I found myself struggling
a lot with what would be easily google-able questions
about another language”

• “Felt much more primitive and first principle, but very
approachable whereas when I first used Unity I felt like
the learning curve was more difficult.”



In summary, students found ChuGL intuitive, and typ-
ically began their assignments by designing the graphical
aspects first. Once familiarized with the workflow, stu-
dents with prior audiovisual programming experience found
ChuGL easier to use than other tools; however, many felt
that the lack of online learning resources made ramping up
more difficult than necessary.

6.3 Comparison with Chunity

Chunity ChuGL
I could prototype quickly 3.38 3.92
Controlling graphical timing
was satisfying

3.09 3.92

UGens were satisfying 4.09 3.67
I felt empowered 4.59 4.67
Controlling audio timing was
satisfying

4.05 4.0

GGens were satsifying N/A 4.33

Table 3: Exit survey results for Chunity and ChuGL (from
2018 and 2023, respectively). Statements where values dif-
fer significantly are in bold. A value of N/A means the
statement was not present on the survey.

In the course survey, students were given statements about
their class experience to which they could respond“Strongly
Disagree - Disagree - Neutral - Agree - Strongly Agree.”
These statements were a superset of those used in the Chu-
nity questionnaire and were quantified in identical fashion:
responses were assigned values 1 (strongly disagree) through
5 (strongly agree) and averaged. Table 3 presents those av-
erages, comparing scores between ChuGL and Chunity.
The two areas where ChuGL scores higher are rapid pro-

totyping and controlling graphical timing, validating our
design goals. ChuGL is simpler than Unity and does not
require lengthy build times to test code; these factors facil-
itate prototyping. Furthermore, responses show ChuGL’s
unified workflow is more satisfying to students than Chu-
nity’s global events and callback handlers.
The one statement where ChuGL scores lower is using

UGens for audio synthesis. This is surprising because UGens
are no different between Chunity and ChuGL. We attribute
this decrease in satisfaction to our own pedagogy—creating
a graphics library while teaching the course meant we natu-
rally placed greater emphasis on graphics, and had less time
to guide students through audio synthesis.
These survey responses are not intended to make any ob-

jective statements of quality; rather, they serve to distin-
guish ChuGL from Chunity and other tools for program-
ming audiovisual applications. We plan to create more
structured learning content to teach students the novel style
of audiovisual programming which ChuGL offers.

7. REFLECTIONS
Why are audio and graphics historically separate? Con-
way’s Law, introduced by computer scientist Melvin Con-
way in 1967, states the structure of a product mirrors the
communication structure of the organization which produced
it [11]. When organizations delegate work to teams and in-
dividuals, they partition a holistic idea into subfields and
impose barriers between them. Audio and graphics are al-
most always delegated to separate teams, and because there
is greater communication friction across teams than within,
the end product exhibits this separation as well. Hence op-
erating systems provide separate graphics and audio APIs,

game engines feature separate rendering and audio systems,
and, to the user, audio and graphics are understood as sep-
arate entities.

The extent to which audio and graphics are separated is
the extent to which the potential for a shared design is di-
minished. Separation increases the likelihood that one side
is prioritized at the expense of the other (historically au-
dio has often been shortchanged wherever graphics are also
involved, especially video game development). In addition,
this separation is a fundamental contributor to complexity
in audiovisual programming, which requires working against
the communication friction inherent between separate soft-
ware and hardware systems.

ChuGL, in contrast, emerges from a belief that the bound-
aries between audio and graphics are arbitrary, and that
the unification of both entities into a single audiovisual tool
and workflow is not only possible, but also holds techni-
cal and artistic potential. As Artful Design Principle 3.1
states, ”Design sound, graphics, and interaction together.”
[24] This design ethos is the overarching goal of ChuGL.
As a tool, ChuGL’s architecture, including its retained-
mode API and efficient synchronization mechanisms, inte-
grate real-time graphics and audio without sacrificing ca-
pabilities of either. And as a workflow, ChuGL reveals the
benefits of this closer integration, which include a unified
audiovisual programming model and implicit time and data
synchronization across audio and graphics contexts. Fur-
thermore, ChuGL programs have access to the entirety of
ChucK’s growing toolset–for example, audio synthesis, anal-
ysis [27], and interactive AI5–along with the potential for
shared design therein.

In its pilot course at Stanford University, students used
ChuGL to craft rich audiovisual experiences. These ex-
periences pointed to limitations of the tool and inspired
directions for future development. But more importantly,
they demonstrated that ChuGL’s unified audiovisual work-
flow—as a way of thinking and doing—empowered a diverse
student body with varying experience in either medium.

Although ChuGL is still in its infancy, it builds on a his-
tory of work arising from shared premises about audiovisual
integration. What we present in this paper is the third iter-
ation in a lineage beginning 20 years ago with Philip David-
son’s GlucK in 2004, followed by Spencer Salazar’s ChuGL
in 2014. Each iteration was made possible by engineering
lessons from the prior, as well as advancements in modern
programming languages, hardware, and graphics APIs.

We are working towards the long-term goal of making
ChuGL a mature platform for audiovisual application de-
velopment by computer music practitioners and indie game
developers alike. This means creating more learning re-
sources, developing new features, and using the tool our-
selves to build larger-scale applications, including audio-
driven video games and instruments that integrate audio
synthesis, graphics, and human interaction for live perfor-
mance. In fact ChuGL has already been used by Celeste Be-
tancur for her audiovisual live-coding sets in venues world-
wide. Currently, we are migrating the underlying graphics
API from OpenGL to WebGPU, adding native support for
3D spatial audio in ChucK, and enabling ChuGL to run
on the web via integration with WebChucK IDE [14, 19].
Other promising directions for ChuGL include intermedia
art installations and live-coding audiovisual performances.

Looking forward, we aspire for ChuGL to not merely sim-
plify making audiovisual applications, but to empower a
fundamental difference in kind. There is a horizon of au-
diovisual design waiting to be explored as tools are increas-

5https://chuck.stanford.edu/chai/



ingly unified, communication friction is reduced, and multi-
modal, multi-disciplinary ways of thinking are encouraged.
Exploring this world means exploring our own aural, visual
selves. Tools (and their design) matter.
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